

The motion platform KannMOTION

Application Note: 100639-000

AN100639_Customized KannMotion Debug.docx

V1.00 / 29.09.2022 mzi

© adlos AG 2022 Page 1/9

AN100639-000: Customized KannMOTION Coding & Debug guidance

Introduction

This document shall enable Users to work with KannMOTION
drives Generation-2. This Generation allows to customize drive
function by USERS ANSI-C code.
KannMOTION is based on ISO/IEC 9899:1999 standard, this
standard is commonly referred to as C99.

KannMOTION -adlos customizing approach, allows to
implement own functionallity in a very code und runtime
efficient way. During developing of customized firmware it
might be very helpful to have a kind of Debugger tool.
This document shows you a way, how you can make your data
visible.

Needs Comwatch 190077 Toolset >= V2.1.1.1 !

How it works

USER static variables can be accessed over defined communication port. To get advantage of that, we need to
know where our variables are mapped in and what is the size and interpretation of it. Comwatch and KannMotion
Manager uses for that a dedicated XML-File defining the access to 'online' data. Every device, firmware has its
own XML interpretation file. For debug purpose of aur customized software we will show, how we can use the
same methodology to get information about our variables during system operation.

Figure 1: Online XML Section of Firmware 190167

There is one RAM structure defined in User.c which is static mapped and so the address range is known in User-
side and also in base application. This is a must to have access to defined RAM during operation od the
KANNmotion drive.

Figure 2: Static Var structure in L2_APPC_SPS_User.c

This RAM section holds predefined variables, to enable data exchange between Main-Application and User-
Application.
As next step, we wil have a short view on certain typedef to get the overview of our possibilities.
In Figure 3 we will find the overall structure having attribute 'packed' what means, that compiler has no
permission to do padding. This is marked with 1) in Figure 3.
For debugging now it is important to have a deeper view into Marking 2) and 3) of Figure 3.
2) union means, that the memory size reserved is given by the 'biggest' following member. A union is a special
data type available in C that allows to store different data types in the same memory location.

The motion platform KannMOTION

Application Note: 100639-000

AN100639_Customized KannMotion Debug.docx

V1.00 / 29.09.2022 mzi

© adlos AG 2022 Page 2/9

You can define a union with many members, but only one member can contain a value at any given time,
respctively they share the same memory location.

Figure 3: Static Var typedef in L2_APPC_SPS_User.h

For coding and Debugging we will use for our purpose the member myData 3). This member is by default 'empty'
defined, so ist is our freedom to define it as we need.
For that we will edit L2_APPC_SPS_myUserTypes.h and fill into the structure tMyData what we need.

Figure 4: MyUserTypes.h Example 1

The motion platform KannMOTION

Application Note: 100639-000

AN100639_Customized KannMotion Debug.docx

V1.00 / 29.09.2022 mzi

© adlos AG 2022 Page 3/9

For Debugger's Wizzard it's important that you use known type specifiers like (UI_8,SI_8;UI_16…) or inside the
same h-file self defined structures, enums or unions.

known Type qualifiers

Unsigned Integer Types
UI_8 8 Bit -> [0..255]
UI_16 16 Bit -> [0..65535]
UI_32 32 Bit -> [0..4'294'967'295]
UI_64 64 Bit

Signed Integer Types
SI_8 8 Bit -> [-128 .. +127]
SI_16 16 Bit -> [-32768 .. +32767]
SI_32 32 Bit -> [-2147483648 .. +2147483647]
SI_64 64 Bit

floating point types
F_32 32 Bit floating point number
F_64 64 Bit floating point number

special
BIT(var) 1 Bit where var ist he Bit-Name

tMyData and tMyNVData

you might fill in both structures with variables you will use. Both structures are held while running inside RAM.
Difference between tMyData and tMyNVData is, that tMyNVData initail value is loaded at PowerUp from device
EEPROM, so means you might use it as Non volatile parameter if you want.

Figure 5:Access inside your code

There might be a way to shorten your writing inside code by setting 2 definitions inside MyUserTypes.h.

So as a consequence of above definitions we can write the same 2 lines much shorter:

Figure 6: Shorten Access

Take care, that your defined structures do not need more RAM than the Flex-Field is offering !
In most KANNmotion firmware the xFLEXSIZE32=32=128 Byte and xFLEXSIZE32NV=4=16 Byte
Do not remove DO_ATTR_PACK at ist definition.

Using StepChain- Variables as State identifier

You might use a StepChain Variable as your State-Machine identifier. To have it better readable we will set first
a Substitute by a #define.

The motion platform KannMOTION

Application Note: 100639-000

AN100639_Customized KannMotion Debug.docx

V1.00 / 29.09.2022 mzi

© adlos AG 2022 Page 4/9

After that we define an enumeration, containing our states:

And as a consequence set this type as comment to your substituiton Line!

If defined like this, Debugger Tool will Rename StepChain by your substitution an will also set your enumeration

names into result field.

In your code, it might look like this:

Using Bit-Fields to get it 'readable'

Figure 7: StepChain as State

The motion platform KannMOTION

Application Note: 100639-000

AN100639_Customized KannMotion Debug.docx

V1.00 / 29.09.2022 mzi

© adlos AG 2022 Page 5/9

Inside code it might like this

Debugger Tools, shows it afterward like this

How to Use Debug Tool

Starting Debug Tool out of COM-Watch

Menu-> Functions->UserSPS Debug Tool

.. as next Step inside Debug-Tool you have to start the XML-Wizzard
to actively create an Decoding XML.
Menu->Functions->StartWizzard

Then choose your h-File, where your type
definitions are placed. (tMyData / tMyNVData)
shall be present.

The motion platform KannMOTION

Application Note: 100639-000

AN100639_Customized KannMotion Debug.docx

V1.00 / 29.09.2022 mzi

© adlos AG 2022 Page 6/9

If there are some unions implemented, the Wizzard needs your Help to decide which variant you want to be
displayed inside the Debug-Tool Gui.

1) Warning in orange, that there was a relevant union found
2) Note that code is marked in purple where you shall do something
3) Scrollbar to scroll througt the pre-parsed code

Scrolling down shows what is meant

1) Variant, Debug Tool will show it as UI_8 Value without decoding
2) Variant Bit Field, Debug Tool will show it as 8-Bit data and as Bit-Field

So, we want to see Bit-Field representation, so we delete the other interpretation variant, after doing that, it
looks like that:

The motion platform KannMOTION

Application Note: 100639-000

AN100639_Customized KannMotion Debug.docx

V1.00 / 29.09.2022 mzi

© adlos AG 2022 Page 7/9

After second parsing we might change some interpretation of variables by editing purple marked fields.

So we cann change factor, what means we can calculate an value… means transmitted RAW data will be
multiplied by this factor, Tool will then show RAW-data and calculated value.
Same for Digits, Tool is calculation in Floating Point so you may show digits after comma so you write here an
integer number of digits after comma you want to visualize.

Press NEXT…

Final-Output XML will be shown…

Press Close AND Start..

The motion platform KannMOTION

Application Note: 100639-000

AN100639_Customized KannMotion Debug.docx

V1.00 / 29.09.2022 mzi

© adlos AG 2022 Page 8/9

If wizard was successful and our drive is connected we will have a running connection and we can see our
variables. Here our example:

1) RAW data column
2) 'calculated' data column
3) Bit-Field detail form
4) Step-chain view, here interpreted as eMyState
5) Timers values

The motion platform KannMOTION

Application Note: 100639-000

AN100639_Customized KannMotion Debug.docx

V1.00 / 29.09.2022 mzi

© adlos AG 2022 Page 9/9

Tools

Adlos Win32-APPs

adlos offers for it's customers some Helping and Design-In Tools.

KannMotionManager Tool (190081), manage your drives

KannMOTION Manage is the general tool for our GEN2 drives. This tool
comes with an integrated C-coder and a visual drag and drop User
interface for customizing your drive.

https://kannmotion.adlos.com/download/kannmotionmanager/application/SetupKannMOTIONManager.zip

ComWatch Communication Tool (190077), for Life values

ComWatch is a helping tool for engineers and technicians to explore
device specific parametes, read out tracking data and settings and doing
firmware updates.
The software is as it is, and in principle for free for adlos customers, the
software is not made for a broad range of standard users, it’s made in
principle for technical engineers which are used in working w. windows
based software and have some understanding of technical things.

https://kannmotion.adlos.com/download/comwatchtool/ComWatchSetup.zip

Contact information

Adlos AG

Föhrenweg 14

FL-9496 Balzers

Thomas Vogt

Thomas.Vogt@adlos.com

Tel: +423 263 63 63

Countries: CH, A, LI, SK, IT

www.adlos.com

KOCO MOTION GmbH

Niedereschacher Straße 54
D-78083 Dauchingen

Olaf Kämmerling

O.Kaemmerling@kocomotion.de

Tel: +49 7720/995858-0

Countries: DE, BE, NL, LU

www.kocomotion.de

https://kannmotion.adlos.com/download/kannmotionmanager/application/SetupKannMOTIONManager.zip
https://kannmotion.adlos.com/download/comwatchtool/ComWatchSetup.zip
mailto:Thomas.Vogt@adlos.com
http://www.adlos.com/
tel:004977209958580
http://www.kocomotion.de/

