
  

The motion platform KannMOTION 

Application Note: 100631 

AN100631_Customizing KannMotion drives withAnsiC.docx 

 
V1.04 / 27.04.2023 TDU 

 

© adlos AG 2023 Page 1/10 

 

  AN100631:  Customizing KannMOTION drives, w. ANSI C-code 

Introduction 

This document is intended to help users to work with KannMOTION 
drives. KannMOTION allows users to customize drive functions (user 
sequences) using ANSI-C code and is based on the ISO/IEC 9899:1999 
standard, commonly referred to as C99. 

KannMOTION's customizing approach allows users to implement 
their own functionality in a very code and runtime-efficient way. 
Unlike other common approaches, the user's code does not need to 
be parsed by a special function such as a PLC. Instead, the user's code 
is directly converted or compiled into CPU machine code at compile 
time. 

For this purpose, adlos offers two ways to implement own code: 

- Graphical block programming (the easier way) 
- ANSI-C code programming  

 
 

How it works 

Our KannMOTION controllerboards run on a base firmware that takes care of handling various features such as 
communication, motor driving, positioning, error management, and I/O scanning and more. This firmware serves 
as the foundation for all our drives' essential functions. 
 
As a distinctive extension, the base (core) firmware can call user code (user sequence) located in the user code 
section if the checksum and function pointers are valid. 
 
Picture 1: basic call principle 

all 5ms Main Firmware
‚core‘

User 
Firmware

Action time < 0.5ms!

 
The principle underlying the firmware of our drivers is "cooperative multitasking," which means that no task is 
permitted to block the operation. Big working loads need to be splitted in smaller working packages! 
 



  

The motion platform KannMOTION 

Application Note: 100631 

AN100631_Customizing KannMotion drives withAnsiC.docx 

 
V1.04 / 27.04.2023 TDU 

 

© adlos AG 2023 Page 2/10 

 

Picture 2: Timing 

t [ms]
I OP P I OP P I OP P I OP P I OP P I OP P

T=5ms

User Tasks

Main Tasks

effective User function operating time

I OP P

Input reg. copy

output reg. set
processing

 
 

Write your code cooperative, means you are niot allowed to write time blocking code ! 
Your functions are not allowed to exeed more than 1ms operating time, for a stable system it's 
needed that your operation time/cycle is much less than 1ms, shall be in Range of <100us  

 
While (stAppCSPS.SPSUserVar.u8_Din.b.bDI1==1) 
{ 
} 

 
Use stepchain Var or merker Var to store, hold, or wait on conditions…. 

 
if (stAppCSPS.SPSUserVar.u8_Din.b.bDI1==1) 
{  
   stAppCSPS.SPSUserVar.u8_StepChain[0]=1; 

         } 
  



  

The motion platform KannMOTION 

Application Note: 100631 

AN100631_Customizing KannMotion drives withAnsiC.docx 

 
V1.04 / 27.04.2023 TDU 

 

© adlos AG 2023 Page 3/10 

 

Working 

Using a C-Editor 

We suggest using a C-code highlighting editor or IDE for larger projects, instead of the the one in the 
KannMOTION Manager, because there is no code completion etc. You can use: 

- SCiTE http://www.scintilla.org 
- STM32CubeIDE 
- … 

Header Files 

Filename Description Mode 
L0_KannCSPS_exTypes.h Special user region types  Read Only 

L0_KannMotDrvTypes.h KannMOTION types and enumeration defines Read Only 

L0_TA_datatypes_GCC_ARM.h Standard data types Read Only 

L2_APPC_SPS_myUserFunctionDefines.h Helper include to define user functions in short form and provide 
better documentation for the user 

Read Only 

L2_APPC_SPS_myUserTypes.h Helper include to define the structure of user variables Read Only 

L2_APPC_SPS_User.h User file header Read Only 

 
Adlos standard types 
   // ******* Unsigned Integer Types, abgeleitet von C99-Standard ****************************** 

   typedef uint8_t   UI_8;                                            //!<  8 Bit -> [0..255] 

   typedef uint16_t UI_16;                                           //!< 16 Bit -> [0..65535] 

   typedef uint32_t UI_32;                                           //!< 32 Bit -> [0..4'294'967'295] 

   typedef uint64_t UI_64;                                           //!< 64 Bit 

 

   // ******* signed Integer Types ****************************** 

   typedef int8_t   SI_8;                                             //!<  8 Bit -> [ -128  .. +127] 

   typedef int16_t SI_16;                                            //!< 16 Bit -> [-32768 .. +32767] 

   typedef int32_t SI_32;                                            //!< 32 Bit -> [-2147483648 .. +2147483647] 

   typedef int64_t SI_64;                                            //!< 64 Bit 

Your User File 

Place your code into the following functions. 

SPS-USER function Description 
void LOCATEUSER AppCSPS_USER_SEQ_STANDARD_1(void) 
 

Your sequence Part-1 
- program here in what you need to do, split it 
maybe in a second part 

void LOCATEUSER AppCSPS_USER_SEQ_STANDARD_2(void) 
 

Your sequence Part-2 
- second part maybe needed to meet 
cooperative multitasking needs 

void LOCATEUSER AppCSPS_USER_SEQ_ERROR(void) 
 

Your error Handler 
Maybe special thinks to do while going intio 
error mode 

void AppCSPS_USER_SEQ_STANDARD_1(void) TaskHandler1 
Program your sequence here, maybe split it into 
a second part if it's too large or computationally 
intensive 

void AppCSPS_USER_SEQ_STANDARD_2(void) TaskHandler2 
Program your sequence here, second part 
maybe needed to meet the requirements of 
cooperative multitasking 

void AppCSPS_USER_SEQ_ERROR(void) ErrorHandler 
Called when going into error mode 

void AppCSPS_USER_SEQ_232_RX_Event(tCSPSCOMRXDATA* pComData) RS232-RxEvent 
Called upon receiving the [Df] serial command 

void AppCSPS_USER_SEQ_CAN_RX_Event(tCANDATA* pRxData, UI_8 Datalength) CAN-RXEvent 
Called upon receiving the CANopen-PDO4 Rx 

void AppCSPS_USER_SEQ_CAN_TX_SynxEvent(void) CAN-TxSyncEvent 
Called when CANopen-PDO4 Tx (Sync on Time 
OR Sync CMD reception) 

void AppCSPS_USER_100ms_Event(void) 100ms Regular Event 
Is called even in error or homing state 

http://www.scintilla.org/


  

The motion platform KannMOTION 

Application Note: 100631 

AN100631_Customizing KannMotion drives withAnsiC.docx 

 
V1.04 / 27.04.2023 TDU 

 

© adlos AG 2023 Page 4/10 

 

Example code: drive to position 1 on digital input 1 rising, and position 2 on digital input 2 rising. 
For more examples, check links in Additional Information. 
 

 

#define DIN_POS1  0x01 // Digital Input to go to position 1 

#define DIN_POS2  0x02 // Digital Input to go to position 2 

#define POS1_VAL  1800 // Position 1 

#define POS2_VAL  -1800 // Position 2 

 

#define u08_state UVar.u8_StepChain[0] 

 

// ---- States -------------------- 

typedef enum 

{ 

   eSTATE__GOTO_POS1 = 1, // Go to position 1 

   eSTATE__GOTO_POS2 = 2, // Go to position 2 

   eSTATE__DEFAULT = 99 

}; 

 

/************************************************************************************************/ 

/*! 

 * \brief SPS-USER function / TaskHandler1 (first) 

 * \details Is called while <SPS-RUN> state every 5ms (not while in error-State!). 

 *   Your code shall not block (Cooperative Multitask). 

 *   Execution time of your block shall be < 50us / max 0.5ms! 

 * 

 *   Program here, regularly things, e.g. Checking IO's .... 

**************************************************************************************************/ 

void AppCSPS_USER_SEQ_STANDARD_1(void) 

{ 

 // Check RISING edge on Din 1 

 if (((UVar.u8_Din.ucAllBits & DIN_POS1) == DIN_POS1) && (UVar.u8_DinChange.ucAllBits & DIN_POS1))  

 { 

  u08_state = eSTATE__GOTO_POS1; 

 } 

 else if (((UVar.u8_Din.ucAllBits & DIN_POS2) == DIN_POS2) && (UVar.u8_DinChange.ucAllBits & DIN_POS2))

 // Check RISING edge on Din 2 

 { 

  u08_state = eSTATE__GOTO_POS2; 

 } 

 

 switch (u08_state) 

 { 

  case eSTATE__GOTO_POS1: 

  { 

   // Call go to function 

   if(UFu_GotoFuncP(POS1_VAL, eGOTO_um_01deg) == eMS_OK) 

   { 

    u08_state = eSTATE__DEFAULT; 

   } 

   break; 

  } 

  case eSTATE__GOTO_POS2: 

  { 

   // Call go to function 

   if(UFu_GotoFuncP(POS2_VAL, eGOTO_um_01deg) == eMS_OK) 

   { 

    u08_state = eSTATE__DEFAULT; 

       } 

       break; 

  } 

  default: 

  { 

   // wait/do something 

  } 

    } 

} 

  



  

The motion platform KannMOTION 

Application Note: 100631 

AN100631_Customizing KannMotion drives withAnsiC.docx 

 
V1.04 / 27.04.2023 TDU 

 

© adlos AG 2023 Page 5/10 

 

Own functions 

 

You may define your own function, but make sure to avoid the following: 
- Passing too many parameters (calling by value), which can lead to excessive heap and 

stack usage 
- Making recursive calls, which can lead to a stack overflow 

 

Keep in mind that the KannMOTION CPU does not have a floating-point unit. Therefore, avoid 
using floating-point calculations and instead use fixed-point operations. Please refer to the next 
chapter for more information. 

 
On the other hand, make your functions small, efficient, and fast. 

 

Calculations 

To optimize performance, it is recommended to avoid floating-point calculations on the KannMOTION CPU as it 
does not have a floating-point unit. Instead, use fixed-point operations for better efficiency. 
 
Figure 1: Fix Point representation 

 
See:  
https://www.embedded.com/fixed-point-math-in-c/ 
 
 

https://www.embedded.com/fixed-point-math-in-c/


  

The motion platform KannMOTION 

Application Note: 100631 

AN100631_Customizing KannMotion drives withAnsiC.docx 

 
V1.04 / 27.04.2023 TDU 

 

© adlos AG 2023 Page 6/10 

 

Flex-User Variables 

Here the FlexUser area which has a size of 20 or 128 bytes, depending on 
the controllerboard (HW, FW version). Except for the reserved bytes for 
controller-specific variables, this area is available for FlexUser variables and 
can be used freely. See other tabs for more information on how about to 
use it. 
 
Find more information in AN100631_SampleCode.zip, see Additional 
Information for downloadlink. 

 

 



  

The motion platform KannMOTION 

Application Note: 100631 

AN100631_Customizing KannMotion drives withAnsiC.docx 

 
V1.04 / 27.04.2023 TDU 

 

© adlos AG 2023 Page 7/10 

 

Program your Drive 

To run your user sequence on the KannMOTION, follow these steps: 
1. Start the KannMOTION Manager and select the appropriate drive 
2. Load your user sequence (C-file) 
3. Compile the program and program it to the drive 

 

 
 
 
 
  



  

The motion platform KannMOTION 

Application Note: 100631 

AN100631_Customizing KannMotion drives withAnsiC.docx 

 
V1.04 / 27.04.2023 TDU 

 

© adlos AG 2023 Page 8/10 

 

Appendix 

Drive Principal State Digram / Main States 

Prinzip State Diagramm
11.4.2019 M.Zimmermann
Version SW   V1.9 - 005

POWERUP

Reset <ok>
>10.5V

0x80 Error
Motor off
Log Error

Wait_Vinok
warte bis Vin >= 10.5V

0x00

INIT_Driver
Output Driver Init

0x02

INIT_Encoder
Encoder Init

0x01

<ok>
Configured and checked

Test
for Production

0x0F

Run
Output Driver Init

0x10

Homing
Output Driver Init0x20..23

USER SPS
USER CMD0x15

<ok>
Configured and checked

<
Er

ro
r>

Ti
m

eo
u

t

<Error>
detected

USER SPE 
Error CMDs

T+1

 
 

  



  

The motion platform KannMOTION 

Application Note: 100631 

AN100631_Customizing KannMotion drives withAnsiC.docx 

 
V1.04 / 27.04.2023 TDU 

 

© adlos AG 2023 Page 9/10 

 

Drive Principal State Digram / Drive Substates 

Prinzip State Diagramm
11.4.2019 M.Zimmermann
Version SW   V1.9 - 005

POWERUP

Reset
eMS_Reset

Before Init
0x00

eMS_HOLD
Driver Ready / Holding Torque

0x02

eMS_IDLE
Driver Ready / no Holding Torque

0x01

Rotate
ACC/RUN/DEC

0x10

DoSTOP
Output Driver Init

0x80

GotoPos
Output Driver Init

0x20
<CMD>
GotoPos

<Need>
Distance in uStps > 21-Bit

  



  

The motion platform KannMOTION 

Application Note: 100631 

AN100631_Customizing KannMotion drives withAnsiC.docx 

 
V1.04 / 27.04.2023 TDU 

 

© adlos AG 2023 Page 10/10 

 

Additional Information 

Check following links for additional information like manuals, tools and especially the sample codes for the user 
sequences. 
 

Manuals, Tools, AppNotes https://www.kannmotion.com/en/downloads/ 

User Sequence Examples https://kannmotion.li/download/ANs/100631/AN100631_SampleCode.zip 

 

 

 

 

 

 

 

 

 

 

 

Contact information 

Adlos AG 

Föhrenweg 14 

FL-9496 Balzers 

 

Thomas Vogt 

thomas.vogt@adlos.com  

Tel: +423 263 63 63 

 

Countries: CH, A, LI, SK, IT 

www.adlos.com 

KOCO MOTION GmbH 

Niedereschacher Straße 54 

D-78083 Dauchingen 

 

Olaf Kämmerling 

o.kaemmerling@kocomotion.de   

Tel: +49 7720/995858-0 

 

Countries: DE, BE, NL, LU 

www.kocomotion.de  

 

https://www.kannmotion.com/en/downloads/
https://kannmotion.li/download/ANs/100631/AN100631_SampleCode.zip
mailto:thomas.vogt@adlos.com
http://www.adlos.com/
mailto:o.kaemmerling@kocomotion.de
http://www.kocomotion.de/

